Beneficial Use of Dredged Material to Restore Salt Marsh Resiliency: A New Jersey Case Study

Metthea Yepsen
New Jersey Department of Environmental Protection
Metthea.Yepsen@dep.nj.gov

Jackie Jahn, Joel Pecchioli, Mary Paist-Goldman, Dave Golden, Jaci Woollard, Jessie Buckner, Gary Taghon, Rob Tunstead, Laura Moritzen

Projects funded by New Jersey Department of Environmental Protection and Department of Transportation, The National Fish and Wildlife Foundation, and The U.S. Army Corps of Engineers

Photo credit: TNC
Objective: Three trial projects to test marsh enhancement through beneficial use of dredged material concept

Landowner: NJ DEP Division of Fish & Wildlife

Funding source: Hurricane Sandy Coastal Resiliency grant (3-years); USACE and NJDOT dredging funds

NJDEP Project Team:
- Landowner
- State regulator
- Wetland ecologists
- Engineers
Objectives

❖ Implement a range of projects on multiple sites
❖ Collaborate with other resource agencies to best use limited resources
❖ Monitor projects to document success and challenges
❖ Disseminate lessons learned to facilitate future projects
Enhancement project goals and assessment

Enhancement project goals:
1. Test the idea that the application of dredged sediment on existing, stressed salt marshes would provide ecological enhancement and help them persist into the future in the face of sea level rise, erosion, and subsidence.
2. Test out a variety of different sediment types, placement methods, and thicknesses on a range of baseline conditions.

Project assessment:
1. Track how the ecology responds initially
2. The methods would be deemed successful if there was
 a. Return to baseline conditions for all metrics*
 b. Lasting elevation increase
 c. More robust native salt marsh vegetation
Ring Island
Marsh demo: Aug. – Sept. 2014
Elevated avian nesting habitat: Aug. – Sept. 2014

** './**
Elevated avian nesting habitat: Aug. – Sept. 2014

Avalon
Marsh demo: Dec 2014 – Jan 2015

Fortescue
Marsh pilot: Late winter 2016
Beach: Late winter 2016
Dune: Late winter 2017
Monitoring

- Vegetation
- Avian use
- Elevation and depth of placement
- SETs and marker horizons
- Nekton
- Benthic infauna
- Epifaunal macro invertebrates
- Soil properties
- Wave energy
- Changes in habitat type (pool, pannes, low marsh, high marsh, dune)
- Damage cost avoided (HAZUS/CHAMP)
- Water chemistry
- Site visits

Photo credit: GreenVest
Ring Island design

❖ Marsh Enhancement

❖ Place even 3 of sand on one half-acre plot and 6” in another half-acre plot

❖ End of the pipeline containing nozzle placed on a pontoon that can be moved along the marsh edge

❖ Due to sandy material, no containment was planned

❖ Elevated Nesting Habitat
Avalon engineered design
Fortescue conceptual design
Stakeholder and community engagement

<table>
<thead>
<tr>
<th>Stakeholders included on project team or frequent meetings</th>
<th>Community engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>❖ Landowner</td>
<td>❖ Town council meetings</td>
</tr>
<tr>
<td>❖ State and federal regulators</td>
<td>❖ Pre-construction meetings</td>
</tr>
<tr>
<td>❖ Wetland scientists</td>
<td>❖ News paper articles</td>
</tr>
<tr>
<td>❖ Engineers</td>
<td>❖ Presentation to community at Wetlands Institute</td>
</tr>
<tr>
<td>❖ Dredgers and dredging experts</td>
<td></td>
</tr>
<tr>
<td>❖ Navigation managers</td>
<td></td>
</tr>
</tbody>
</table>
Federal and state policy and permitting

<table>
<thead>
<tr>
<th>Project</th>
<th>NJDEP Permit</th>
<th>USACE Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Island Demo Marsh and Elevated Nesting Habitat</td>
<td>Combined GP29 and AUD; CZM Consistency and WQC.</td>
<td>Not required</td>
</tr>
<tr>
<td>Avalon Marsh</td>
<td>2014 Demo Project – GP29 and AUD; CZM Consistency and WQC.</td>
<td>Not required</td>
</tr>
<tr>
<td></td>
<td>2015 Pilot Project – GP24 and AUD; CZM Consistency and WQC.</td>
<td></td>
</tr>
<tr>
<td>Fortescue Marsh</td>
<td>Combined GP29 and AUD, CZM Consistency and WQC issued to NJDEP-DFW for habitat enhancement.</td>
<td>Combined Individual permit for dredging and habitat restoration issued to NJDEP-DFW.</td>
</tr>
<tr>
<td>Fortescue Beach</td>
<td>Combined Waterfront Development Permit. AUD, CZM Consistency, and WQC issued to NJDOT-OMR for the dredging and dredged material placement work.</td>
<td></td>
</tr>
<tr>
<td>Fortescue Dune</td>
<td>Combined Waterfront Development Permit. AUD, CZM Consistency, and WQC issued to NJDOT-OMR for the dredging and dredged material placement work.</td>
<td></td>
</tr>
</tbody>
</table>
Implementation: Ring Island
Implementation: Avalon

Photo: Damon Noe, TNC
Implementation: Fortescue

Placed sediments

Damage from machines

Containment

Photo: Damon Noe, TNC
Avalon after one growing season

June 24 2016

Photo: Jessie Buckner, TNC

Sept. 20th 2016

Photo: Jaci Wollard, NJDEP
Depth of placement

Ring Island
 – 96% sand
 – average depth of placement was 5.9”

Avalon
 – fine-grained silt
 – average depth of placement of 9.5” (excluding plots that started as pools)

Fortescue
 – silt and sand mixture
 – average depth of 6.3”
Ring Island: depth of placement/ elevation

- Lowest elevation at which *Phragmites australis* occurs
- Even 6" placement
- High-low marsh
- Even 3" placement
- Panne
- MHHW (2.14')

(Elevation * footnote)

Sample Points (n=31)

The Nature Conservancy
Vegetation

Ring Island

Avalon

Fortescue
Benthic Infauna

Ring Island
2 years post placement

Avalon
1 year post placement

Fortescue
1 years post placement

Taghon, Rutgers University,
ongoing research
Sediments

• Very low organic matter in placed sediments
• Sediments hydraulically sorted as they were placed = low pore space and plating in fine grained sediments
• Too high = too dry = acid sulphate conditions
 – pH <3.8 in upper 17 cm

Tunstead, NRCS
Design: major lessons learned

• Sandy sediments are not well suited to being hydraulically spread in a thin and even layer on existing marsh

• Selecting proper target elevations is key:
 – bio-benchmarks
 – thinner is better
 – aim lower rather than higher to maintain tidal flushing and reduce need for containment
 – study how channel sediments will dewater and consolidate

• Work with dredging company to design constructible projects
 – distance that sediments can be pumped from channel
 – distance from marsh edge that sediments can be pumped into marsh

• Clearly document as-built goals AND post construction goals
Permitting: major lessons learned

• Involve regulators and landowner as soon and as often as possible in your project to address concerns as they arise

• Get permits in at least 3 months prior to planned construction
Construction: major lessons learned

• It takes longer to construct a marsh enhancement project than either a traditional dredging project or a dune/beach project
• Avoid using machinery (even if low pressure) on the marsh as much as possible
• Plan to remove containment
Monitoring: major lessons learned

• Find funding to monitor for more than 3 years post-construction (5-10 years more likely)
• Include regular site visits with structured qualitative observations (e.g., fixed photo points, condition of containment, etc.)
Is using dredged material for marsh enhancement a “win-win” situation? The jury is still out.

“Big” project-specific questions to answer include:

❖ How long does it take for the marsh to be enhanced?
❖ Are there long-term negative impacts of such projects?
❖ Are there really cost savings by combining projects?
❖ Is this a once and done solution or will we need to place sediment on the marsh repeatedly over time?

Stay tuned for answers …
Thank you.
Welcome to the NJ Coast

Photo credit: Jim Wright/TNC/LightHawk

Photo credit: Jim Wright/TNC/LightHawk
Threats to salt marshes

Photo: Jeanna Mielcarekuconn, sharp

Photo: TNC

http://www.friendsofblackwater.org

Blackwater NWR Marsh Loss

1938 1974 1989

http://www.friendsofblackwater.org

Sources: ESa, DigitalGlobe, GeoEye, Earthstar Geographics, GADE/Airbus DS, USDA, USGS, AAWorth, IGN, IOP, GeoEye, and the ESRI User Community