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Abstract: Worldwide, many river floodplains contain critical infrastructure that is vulnerable to 

extreme hydrologic events. These structures are designed based on flood frequency analysis aimed 

at quantifying the magnitude and recurrence of the extreme events. This research topic focuses on 

estimating flood frequency peaks for a critical infrastructure within Connecticut’s Naugatuck River 

Basin utilizing an integrative framework consisting of a distributed rainfall-runoff model forced 

with long-term (37 years) reanalysis meteorological data and a hydraulic model driven by high-

resolution LiDAR derived terrain elevation data. The CREST-SVAS hydrologic model reanalysis is 

used to derive 50-, 100-, 200-, and 500-year return period flood peaks, which are then used to drive 

HEC-RAS hydraulic simulations to estimate the inundation risk of a power critical infrastructure 

and evaluate hydraulic structure operation strategies to reduce inundation risk of the downstream 

infrastructure. This study illustrates the potential of the framework to creating flood maps and 

demonstrates the effects of different water management scenarios on the flood risk of the 

downstream infrastructure. 

 

Keywords: flood frequency analysis; hydrologic and hydraulic modeling; flood inundation; LiDAR; 

HEC-RAS; Synthetic Hydrograph. 

 

1. Introduction 

Floods are among the most damaging natural disasters, with increasing impact and frequency 

in Northeastern United States [1]. In the United States alone in recent decades floods have accounted 

for thousands of deaths and tens of billions of dollars in annual losses. Additionally, many utilities 

rely on critical infrastructure located in floodplains that are vulnerable to these extreme hydrologic 

events, allowing disturbances to extend beyond the floodplain. In flood resilience, we seek to quantify 

and mitigate the flood risk, as well as expedite recovery from the consequences after a flooding event 

occurs [2]. Resilience can be improved in many ways, including: land use management, flood 

infrastructure management and operation, storm water withholding, more effective flood emergency 

preparedness, and flood response policy. However, before policy actions can be put in place, the risk 

must first be systematically quantified. 
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In relation to flood design, engineers use historical flow observations to derive information 

relative to the expected recurrence (i.e. return period) and magnitude (i.e. return level) of a flood 

event. The observed frequency is modeled using a probability distribution that can further be used 

to estimate the return period of event magnitudes that are generally unobserved (e.g. flood event 

with 500 yr return period). Distributions used in frequency analysis vary, but in USA engineering 

practice relies on the use of Log-Pearson Type III, which is recommended by the U.S. Water Resource 

Council [3]. Information regarding magnitude and frequency of occurrence of flooding events 

gathered through flood frequency analysis (FFA) is instrumental to mitigating losses associated with 

floods, particularly when designing hydraulic structures such as reservoirs and dams. 

Hydrologists have developed a number of methods to conduct FFA. These methods can broadly 

be classified into two groups: statistical approaches and rainfall-runoff modeling. For statistical 

approaches, statistical analysis or hydrological regionalization are used to analyze hydrological data 

within a basin, or transfer hydrological information from one or more homogenous gauged 

catchments to a neighboring or geographically/ hydrologically similar basin [4–6]. However, the 

quality of the estimation in the basin is subject to the continuous length of flow observations of the 

basin or neighboring gauged basins, and potential nonstationarity of the historical flood trend. In an 

alternate approach, observed precipitation combined with various other meteorological forcing 

parameters are used to drive physically-based hydrologic and flood routing models to simulate 

surface flows. Surface flows are made up of both overland and channel flow routing, which can either 

be handled separately by two models [7,8], or combined through a coupled model [9,10]. 

Hydrodynamic routing models simulate surface flows based on solutions to simplified shallow water 

equations like: the kinematic wave [12] or diffusion wave equations [8]. Solutions to these equations 

rely on parameters directly derived from physical watershed characteristics rather than empirically 

estimated coefficients. Specifically, physically-based distributed hydrologic models are able to 

capture the spatial variability of hydrologic parameters, thereby better characterize the heterogeneity 

of certain complex hydrologic processes within catchments [11,13,14]. In inland watersheds flooding 

is caused by rainfall, snowmelt, or a combination of both. Distributed hydrologic models have the 

capacity of accounting for the intra-basin variability of runoff-producing mechanisms by integrating 

gridded meteorological forcing with land cover, vegetation, terrain and soil data. Furthermore, with 

the availability of high-resolution re-analysis forcing datasets like the North American Land Data 

Assimilation System (NLDAS), hydrologic models can now make use of quality controlled, 

temporally and spatially consistent datasets at a fine spatiotemporal resolution, often in areas that 

were previously uncovered by ground-based measurement networks. This study used The Coupled 

Routing and Excess Storage-Soil-Vegetation-Atmosphere-Snow (CREST-SVAS) model driven by 

NLDAS forcing data to simulate flows in basins of Northeastern United States [11]. 

The objective of this study is to demonstrate a numerical framework for evaluating flood 

vulnerability in terms of inundation at a site of interest in the Naugatuck River basin featuring critical 

utility infrastructure and different operation scenarios for an upstream dam. Accurately assessing 

flood vulnerability at this site of interest is problematic because of the lack of necessary long-term 

observations at the site of interest and the existence of a major flood control dam upstream. This 

paper presents an integrative framework, involving atmospheric reanalysis driven hydrologic and 

hydraulic simulations that address the issue of long-term flow data, and examine the impact of dam 

operation on the downstream floodplain under varying flood return periods.      
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2. Materials and Methods  

2.1. Study Area 

 

Located in Western Connecticut, the Naugatuck River is the largest tributary of the Housatonic 

River. Entirely confined within the state’s borders, the Naugatuck River spans over 39 miles south 

from Torrington to Derby, 12 miles north of the Long Island Sound. The stream features quick flows 

for the majority of its length, due to its fairly steep gradient of 13 feet per mile. This steep gradient 

causes the runoff from precipitation in the basin to be rapid. In this study basin, considerable floods 

occur in the spring, where heavy rainfall can trigger snowmelt which then contributes significantly 

to the flood magnitude and volume. Previous models have failed to capture flood peaks in this region 

due to the complexities of this hydrologic interaction [15,16]. At its outlet, the river has an average 

annual streamflow of 560 cubic feet per second (cfs), while minimum baseflows are approximately 

80 cfs. The river’s watershed is an approximate 311 square miles covering 27 different towns. The 

watershed contains a variety of land uses, including but not limited to: rural, dense urban, suburban, 

agricultural, and undeveloped forested areas.  

For this study two separate river reaches were selected to investigate, primarily because of the 

presence of critical infrastructure in these areas. One infrastructure, just a mile north to Thomaston, 

and at approximately the midway point of the Naugatuck River is the Thomaston Dam. A flood 

control dam built and operated by the U.S. Army Corps of Engineers in 1960, the Thomaston Dam is 

a 142-feet high, 2000 feet long, horseshoe shaped earth fill dam with two 10 feet adjustable gates. 

While the Dam is normally empty, it has the potential to utilize 960 acres to store up to 13.7 billion 

gallons of water [17]. The other critical infrastructure is located in Waterbury, an urbanized and 

industrialized portion of the river and 9 miles downstream of the Dam. This area features sections 

(henceforth known as critical infrastructure “A” and “B”) both in close proximity to the Naugatuck 

River (Figure 1c).   

Within the context of this study, the Naugatuck River Basin was split into two sub-basins, with 

the dividing point located at the Thomaston Dam (Figure 1b). The upstream portion will henceforth 

be referred to as river reach “U”, and the downstream portion being river reach “D.” This separation 

was done to help isolate streamflow contributions at the outlet of the dam from contributions of 

overland runoff, and thus attempting to re-create the influence of dam regulations on downstream 

floodplains. For validation purposes simulated flows were compared to the only USGS steam gage 

in the area located upstream (USGS 01206900) in the Naugatuck River at Thomaston, CT (Figure 1a) 

as well as a stream gage at the inlet of the Thomaston dam. 
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Figure 1 - a) The Naugatuck River Basin, b) the subdivision of the Naugatuck River Basin, c) 

satellite imagery of critical infrastructure in Waterbury, Connecticut  

 

2.2. Flood Vulnerability Framework 

A numerical framework that incorporates high resolution terrain data, flood frequency 

reanalysis, synthetic events construction, and inundation simulation has been developed within the 

study (Figure 2). We tested the method in the Naugatuck River of Connecticut. Specifically, peak 

flows of the Naugatuck River were simulated using the CREST-SVAS model forced with 37-year 

NLDAS data. Flood frequencies with 0.02, 0.01, 0.005, and 0.002 exceedance probabilities (50, 100, 

200, and 500 return year periods, respectively) were estimated by fitting the Log-Pearson Type III 

distribution. These peak flows and timing to peak information extracted from historical flood event 

records were used to construct synthetic hydrograph of flood events of desired return periods 

following a methodology proposed by Archer (2000) [18]. Based on LIDAR derived high resolution 

DEM, these synthetic hydrographs forced HEC-RAS to generate flood inundation maps in a 

downstream region controlled by a dam. This study’s CREST-SVAS runoff simulations exhibited 

good agreement with stream flow measurements from an upstream USGS station, and HEC-RAS 

one-dimensional modeling approach exhibited good agreement with measured stage-discharge 

ratings based on one of the most severe historic events in our database. 
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Figure 2 – Structure of analysis framework 

 

2.2.1 CREST-SVAS Hydrologic Model 

 

 This study utilized the newest Coupled Routing and Excess STorage model, version 3.0 with 

soil-vegetation-atmosphere-snow extension (CREST-SVAS) [11]. CREST-SVAS is a computationally 

efficient, fully distributed hydrological model designed to simulate flow discharges for large 

watersheds at a fine spatiotemporal resolution (30 m to 1 km spatial grid resolution and hourly time 

steps). CREST-SVAS integrates a runoff generation module to simulate vertical fluxes with a routing 

module to simulate channel discharge at each time step. The runoff generation model couples energy 

and water balances in four different mediums: atmosphere, canopy, layered snow pack and soil, by 

solving water and energy balances coupled equations simultaneously. It takes dynamic 

(precipitation, radiation, humidity, wind speed, leaf area index) and static (land cover, soil properties, 

impervious ratios) input variables.  Due to its strong physical basis and computational efficiency, 

CREST-SVAS is capable of producing long-term, high-resolution hydrological simulations. 

Additionally, by physically coupling the snow accumulation/ablation with other water and energy 

exchanges in the SVA structure, CREST-SVAS gains improved simulation accuracy in situations 

previously considered difficult basins with mixed phase precipitation [11].  
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2.2.2 Flood Frequency Analysis  

 

2.2.2.1 LPIII Method 

 

 Flood frequency analysis is the process of evaluating peak magnitudes and frequencies of past 

floods in order to estimate the exceedance probabilities of similar floods.  This probability 

information is vital to the accurate delineation of flood zones and safe design of hydraulic structures 

[19]. Bulletin #17B of the U.S. Water Resource Council recommends Log-Pearson Type III as the 

statistical distribution technique to determine peak-flow frequency estimates. Log-Pearson Type III 

utilizes three statistical parameters: the mean, standard deviation, and skew coefficient to describe 

the theoretical distribution of the peak-flow data [3]. Flood frequency analysis (LPIII Method) was 

performed on annual max peaks from the CREST-SVAS simulation in the Naugatuck River basin in 

order to generate the necessary flood return periods.  

 

2.2.2.2 Adjustment Technique for Flood Frequency Estimation 

  

 As introduced earlier, gridded forcing data of 1/8th-degree (~14km) spatial resolution is used in 

this study to force CREST. Our forcing data sacrifices their spatial resolution to obtain relatively high 

temporal resolution (sub-daily). Therefore, local extreme precipitation may often be smoothed. 

Model dependency introduce additionally biases. Consequently, it is expected that the simulated 

flow peak cannot fully capture the reality. In other words, underestimation of flood peaks constantly 

exists, which in turn, biases the estimation of flood frequency. To address such bias, we applied 

quantile-based matching technique to post process CREST flow output only to improve the quality 

of flood frequency estimation. Since the frequency estimation applied here depends solely on 

maximum annual peak values of the flow time series, only the top ranked flow rate will affect this 

estimation. Therefore, we adjust top percentiles values using Equation (1). 

 𝑄𝑜𝑏𝑠(𝑝) = 𝑎[𝑄𝑠𝑖𝑚(𝑝)]𝑏 , 𝑝 ≥ 𝑝0 (1) 

   

where 𝑄𝑜𝑏𝑠(𝑝) and 𝑄𝑠𝑖𝑚(𝑝) stand for observed and simulated flow at p percentile and 𝑝0  is the 

lowest percentile of all annual peaks. Equation (1) is established on stable relationship of top ranked 

flow value between observation and simulation.  

 

2.2.3 Constructing Synthetic Hydrograph 

 

 Flood frequency analysis only gives flood peak magnitude information. To credibly model the 

flood propagation, the hydraulic model requires a complete realistic flood hydrograph rather than 

assuming a constant flow using the peak value for the entire flood event period. This study uses a 

Synthetic Hydrograph method proposed by Archer et al. (2000) [18]. The proposed method has 

benefit of neither requiring the separation of base flow and storm runoff nor assuming the 

hydrograph is symmetric, but instead considers the hydrograph in its totality by recreating a 

normalized median flood hydrograph from observations (Figure 3). This method was used to 

construct synthetic hydrographs for flood events at 50, 100, 200, and 500-yr return periods used as 

upstream boundary conditions in river reaches “U” and “D”. The constructed synthetic hydrographs 

are finally input to HEC-RAS to simulate inundation.   
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Figure 3 - Deriving median durations for each exceedance percentile to determine median 

hydrograph shape 

 

2.2.4 Hydraulic Simulation 

 

 To quantify flood risk and identify flood prone areas, a hydraulic model (one-dimensional or 

two-dimensional) is used to simulate the spatial distribution of hydraulic variables like water depth 

and flood inundation extent. Two main forcing factors are required in HEC-RAS: the flood event’s 

streamflow time-series and bathymetry of the river channel and surrounding floodplain. HEC-RAS 

is fully compatible with ArcGIS and accepts vector and raster data formats, therefore, the model gains 

access to one or two-dimensional representations of measured/computed hydraulic parameters at a 

fine spatial scale. High-resolution topographic data is necessary to capture the finer-scale 

heterogeneous features of a river and its floodplain and their effects on flood propagation. Airborne 

LIDAR-based observations provide topography at a finest resolution (1m) over regional scale. 

Simulation accuracy is sensitive to DEM resolution. This improvement in resolution directly 

translates to the model’s ability to accurately map flood inundation extent. Cook et al. (2009) [20] 

demonstrated that for a given flow and geometric description, HEC-RAS-predicted inundated area 

decreased by 25% when forced with 6 m LIDAR DEM instead of the 30 m National Hydrographic 

Dataset (NHD).  

In the preprocessing, river cross-sections were extracted from airborne LIDAR-derived. Stream 

centerlines, river bank lines, predicted flow paths, inline structures, and river and terrain cross-

sections were digitized. In order to accurately capture the meandering river characteristics, cross-

section spacing was less than 150 feet. These pre-processed river profiles were then exported to HEC-

RAS to be used as a basis for hydraulic simulation. Two separate stream sections from the Naugatuck 

River were modeled and exported to HEC-RAS, one for the upstream section containing the 

Thomaston Dam (river reach “U”), and the other for the downstream section containing the critical 

electrical infrastructure (river reach “D”) (Figure 4). 
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Figure 4 - Upstream river reach "U" and downstream river reach “D” modeled in the HEC-

RAS domain displayed over LIDAR derived DEM 

 

 The next step was to incorporate the flood-control dam on the delineated flood plain within 

HEC-RAS by utilizing the high-resolution topographic data and supplementary building design 

information (gate characteristics, construction materials, etc.) gathered from correspondence with 

Thomaston Dam engineers. The Thomaston Dam controlling the upstream reach “U”, is featured by 

two sluice gates, which is hoisted to limit the flow passing underneath. These gates are 5.66 ft wide, 

can open to a maximum of 10 ft, and were assigned a typical energy loss coefficient of 0.6. 

Additionally, this dam is featured by a spillway 14 ft below the crest to reduce the pressure to the 

dam and release water in an extreme flooding scenario. In all tested flooding scenarios, flood stages 

were far below the level to activate the spillway, and thus the spillway played no role in downstream 

inundation and will not be discussed in the scope of this paper.  

Multiple plans were simulated in the following flooding scenarios: a 50-year flood event, 100-

year flood event, 200-year flood event, and 500-year flood event. In river reach “U”, each simulation 

was forced by a corresponding synthetic hydrograph with different initial depth conditions and gate 

operational plans. The plans include fully-open (10ft gate openings) and half-open gates (5ft gate 

openings). The conditions include under normal low flow (base flow conditions) and a half-full 

reservoir. In the first condition, the dam is set empty when the simulation begins. In the second 

condition, the reservoir of the dam starts with 50% capacity filled. Water depths and stream velocities 

were finally output in a total of 16 flooding cases in the upper modeled river reach “U”. The simulated 

hydrographs output from the dam in river reach “U” were then added to the synthetic hydrographs 

of the same return period for river reach “D”. The hydrographs were added “peak to peak”, where 

the maxima of upstream hydrograph were combined directly with the maxima of downstream 

hydrograph with no time delay. This was done in order to simulate the “worst case scenario” of 

maximum flooding. The newly altered synthetic hydrographs forced the hydraulic simulation in 

river reach “D”. Depending on the flood scenario, the outflow from the dam with fully or half opened 

gates contributed from 7-20% of the peak streamflow at the outlet of river reach “D” (Table 1), 

demonstrating the significance of accurate overland runoff simulation from the hydrological model. 
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Dam Peak Streamflow Contribution (cfs) 

Flooding Scenario Half Open Gates Fully Open Gates 

50 Year    

Empty Reservoir 22930 (9.94%) 24890 (16.90%) 

 Half Filled Reservoir 23369 (11.52%) 25862 (20.07%) 

No Dam 34235 (66.89%) 

100 Year     

Empty Reservoir 25514 (9.20%) 27558 (15.78%) 

 Half Filled Reservoir 25922 (10.52%) 28453 (18.45%) 

No Dam 38427 (66.86%) 

200 Year     

Empty Reservoir 28168 (8.56%) 30289 (14.80%) 

 Half Filled Reservoir 28549 (9.67%) 31116 (17.07%) 

No Dam 42748 (66.83%) 

500 Year     

Empty Reservoir 31810 (7.83%) 34024 (13.68%) 

 Half Filled Reservoir 32161 (8.73%) 34776 (15.52%) 

No Dam 48705 (66.78%) 

Table 1 – Thomaston Dam outflow contribution to downstream basin outlet peak streamflow 

 
Accompanying the 16 cases simulated in river reach “U” two scenarios, closed dam and no dam, 

were simulated solely in river reach “D”. The closed dam scenario assumes the dam completely 

congests all upstream contribution, so the hydraulic simulation is forced only by the downstream 

synthetic hydrograph (thus having no dam streamflow contribution). The no dam scenario illustrates 

the potential flooding that would occur if the protection provided by the dam was removed. In order 

to simulate this situation, the dam inflow synthetic hydrographs were combined “peak to peak” with 

the downstream synthetic hydrographs of the same return period. This adds an additional 8 flooding 

cases modeled exclusively in river reach “D”. A diagram illustration all of the separate dam operation 

plans and return periods simulated in river reaches “U” and “D” for this study can be found in Figure 

5 below. 
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Figure 5 – Dam operation scenario diagram 

2.3. Data 

 

2.3.1 LIDAR Terrain Elevation Data 

  

For this study, LIDAR data was provided by Connecticut Environmental Conditions Online 

(CTECO). The LIDAR data is available statewide, representing approximately 5,240 square miles in 

the form of USGS Quality Level 2, and point density of 2 points per square meter, hydro-flattened 

bare earth 1m resolution. The LIDAR flights took place between March 11, and April 16, 2016. These 

flights occurred during a low flow season when the depth of the river’s water can be considered 

negligible compared to water depths during flood events. The horizontal datum is North American 

Datum of 1983 (NAD83) and the vertical datum is North American Vertical Datum of 1988 

(NAVD88). The LIDAR surface was evaluated using a collection of 181 GPS surveyed checkpoints 

and produced an average vertical error of 0.0012192 meters with a standard deviation of 0.0695 

meters [21]. 

However, LIDAR is still subject to its own errors. Streambed profiles measured through LIDAR 

techniques tend to be incorrect. This is due to the backscatter effect, the inability of LIDAR pulse to 

penetrate water surfaces. These uncertainties have the potential to propagate, leading to an 

underestimation of water held in the stream channel, or an overestimation of water in the 

surrounding floodplain.  In an investigation done by Hilldale et al. (2007) [22] on the accuracy of 

LIDAR bathymetry for the Yakima River in Washington State, mean vertical errors between remotely 

sensed and survey data were in the range of 0.10 and 0.27 meters, with standard deviations from 0.12 

to 0.31 m. Nevertheless, LIDAR DEMs have enormous potential for application in various areas 

including land-use planning, management and hydrologic modelling. Specifically, in regards to 

hydraulic modeling, making using of a fine-resolution LIDAR based DEM profiles of stream cross-

sections at critical locations with the closest spacing moves the model set-up towards being more 

spatially distributed in nature, likely resulting in performance improvements. 

 

2.3.2 NLDAS Reanalysis Forcing Data 

 

The North American Land Data Assimilation System (NLDAS-2) is a collaborative project 

involving several groups:  NOAA/NCEP's Environmental Modeling Center (EMC), NASA's 

Goddard Space Flight Center (GSFC), Princeton University, the University of Washington, the 

NOAA/NWS Office of Hydrological Development (OHD), and the NOAA/NCEP Climate Prediction 
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Center (CPC). The dataset is in 1/8th-degree grid resolution, hourly temporal resolution, and is 

available from January 1st, 1979 to present day. The non-precipitation land-surface forcing fields are 

derived directly from the analysis fields of NARR. The precipitation field in NLDAS results from a 

temporal disaggregation of a gauge-only CPC analysis of daily precipitation over the continental 

United States [23]. This analysis is performed directly on the NLDAS 1/8th-degree grid, and includes 

an orographic adjustment stemming from the long-established PRISM climatology [24]. The hourly 

disaggregation weights for this precipitation field are derived from either 8-km CMORPH hourly 

precipitation analyses [23], NARR-simulated precipitation, or WSR-88D Doppler radar-based 

precipitation estimates [25].  

3. Results 

3.1. Validation of stream flow simulations 

 CREST-SVAS hydrologic model simulated streamflows in the watershed upstream of the 

Thomaston Dam. These streamflows were validated against observed discharges measured by a 

stream gauge at the inlet of the dam maintaned by USACE (U.S. Army Corps of Engineers). A total 

of 45 events were used for calibration/validation of the model, with 9 of the events used for 

validation. A mosaiced hydrograph of all the events is shown in Figure 6. CREST-SVAS performed 

well in simulating these events. The Nash-Sutcliffe coefficient of efficiency (NSCE) [26], Pearson 

correlation coefficient, and relative bias (see equations 2-4) of the CREST-SVAS simulated stream 

flow and observation are 0.7, 0.85, and -6.3%, respectively. 

 
𝑁𝑆𝐶𝐸 = 1 −

∑ (𝑄𝑚
𝑡 − 𝑄𝑜

𝑡)2𝑇
𝑡=1

∑ (𝑄𝑜
𝑡 − 𝑄𝑜)

2
𝑇
𝑡=1

 
(2) 

Qo is the mean of observed discharges, Qm is modeled discharge, and Qot is observed discharge at 

time t. In addition to NSCE we computed the correlation coefficient and relative bias, defined as: 

 
𝐶𝐶 =

∑ (𝑄𝑚
𝑡 − 𝑄𝑚

̅̅ ̅̅ )(𝑄𝑜
𝑡 − 𝑄𝑜

̅̅̅̅ )𝑇
𝑡=1

√∑ (𝑄𝑚
𝑡 − 𝑄𝑚)

2
𝑇
𝑡=1

√∑ (𝑄𝑜
𝑡 − 𝑄𝑜)

2
𝑇
𝑡=1

 
(3) 

 

 
𝐵𝑖𝑎𝑠 =

𝑉𝑚 − 𝑉𝑜𝑏𝑠
𝑉𝑜𝑏𝑠

∗ 100 (4) 

Vm is the total measured volume and Vobs is the total observerd volume. 

 



Water 2017, 9, x FOR PEER REVIEW  12 of 22 

 

 

Figure 6 - CREST-SVAS daily streamflow validation against observation for Naugatuck River 

Basin at inlet of Thomaston Dam 

 

3.2 Validation of hydraulic simulations 

 Simulated dam outflow from the August 27th 2011, the largest recent flooding event in river 

reach “U”, were validated against flow rates computed using gate rating curves posted by the US 

Army Corps of Engineers (see Figure 7). Hydrographs recorded by a stream-gage at the inlet to the 

dam were used for the model’s upstream boundary condition. The measured flood-control gate 

height time-series from the Thomaston dam for this same event were used as operation of the dam 

in the simulation. During this event, a maximum flood stage of 74.66 ft was reached, producing 

outflow rates of 753 cfs and 1244 cfs when the gates were open 3ft and 5 ft, respectively. The model 

displayed good agreement with these two outflow rates, with minor gate discharge discrepancies of 

only 77 cfs (10% error) and 166 cfs (13% error) for the two operational scenarios. Additionally, 

simulated stream flow rates for the same flooding event in river reach “U” were compared against 

observed hydrographs from a stream gauge (USGS station 01206900) residing 1.5 miles 

downstream of the Thomaston dam on the Naugatuck River (Figure 8). As seen in the figure, the 

model did well in capturing the overall hydrograph shape; however, it consistently underestimated 

total streamflow. This underestimation can be explained by overlooking the contributing area 

between the dam and the USGS gauge location. 
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Figure 7 - Model simulated gate discharge validated against Thomaston Dam posted ratings curves 

 

Figure 8 - Model simulated dam output streamflow validated against observations from USGS 

station (01206900) Naugatuck River at Thomaston, CT 
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4. Discussion 

Maximum inundation depth and extent maps simulated by the HEC-RAS model for each of the 

24 flooding scenarios in downstream river reach “D” are illustrated in Figures 9-12. Flood extent was 

determined by subtracting the underlying ground elevation from the LIDAR derived TINs from the 

water surface profile elevation. If the result was positive, then the area is classified as inundated and 

assigned a flood depth. Simulated water depths and extents have been co-displayed over satellite 

imagery to visualize the susceptibility of certain urban areas in Waterbury-CT. A high-end limit of 7 

feet was utilized in the inundation maps so that the spatial variability of flood depths could be more 

clearly represented. The majority of flood occurred in the floodplains on the eastern side of the 

Naugatuck River. An elevated highway that runs along the western edge of the river prevents floods 

from propagating in that direction. 

 

 
Figure 9 - Simulated maximum 50-year flood inundation in various dam operation scenarios  
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Figure 10 - Simulated maximum 100-year flood inundation in various dam operation scenarios 
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Figure 11 - Simulated maximum 200-year flood inundation in various dam operation scenarios  
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Figure 12 - Simulated maximum 500-year flood inundation in various dam operation scenarios  

 

As shown in the results, a portion of the area of interest, more specifically critical infrastructure 

“A”, is partially or fully inundated in all flood scenarios. The maximum flood depth in each scenario 

at critical infrastructure “A” as well as critical infrastructure “B can be seen in Figure 13. During the 

“worst case scenario” with the protection of the dam, a 500-year flood with the upstream dam’s 

reservoir initially half-filled and both flood control gates fully-open, the area of interest experienced 

an estimated 4.63 and 2.69 feet of inundation at critical infrastructure “A” and “B”, respectively. 

When the dam was removed, these same locations experienced a greatly increased 6.32 (+36.5%) and 

4.38 (+79.5%) feet of inundation. However, when the dam was closed and only the downstream 

watershed contributed to flooding, critical infrastructure “A” and “B” experienced a decreased 2.69 

(-42%) and 0.17 (-94%) feet of flood inundation, respectively. Comparing the no dam and fully-open 

dam operational scenarios provides direct insight on the role the dam plays in protection by delaying 

voluminous flood waters from reaching downstream floodplains. Analyzing the closed dam scenario 

provides understanding of how upstream streamflow contribute to downstream flood depth, and 

demonstrates dam’s potential to control inundation, further illuminating the substantial dampening 

effect the dam has on downstream flood propagation under different dam operational scenarios. The 

remaining flood return periods (50-year, 100-year, 200-year) experienced similar increases in flood 

depth when the protection of the dam was removed and decreases in flood depth when the dam was 

closed. In all scenarios critical infrastructure “A” was more severely affected by flooding than critical 

infrastructure “B”, likely due to its close proximity to the river’s bank.  
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Figure 13 – Simulated maximum water depth (ft) at critical infrastructure “A” and “B” for the 

various flooding and dam operation scenarios examined 

 

This study also examined how different flood infrastructure management strategies impact 

downstream floodplain areas. The manipulation of the flood control dam’s gate height had a 

recognizable influence on both estimated maximum flooding extent and flood depth. This influence 

was more substantial during the 50-year and 100-year higher probability flooding events. With an 

initially empty dam reservoir, moving from half open to fully open gates produced 165%, 90%, 7%, 

and 6% increases in maximum water depth at infrastructure A for the 50-, 100, 200, and 500- return 

period simulated extreme flood events. While infrastructure B was dry for the 50- and 100-year flood 

scenarios, it too saw increases of 33% (200-year) and 21% (500-year) in flood depth when simulated 

with the same initial empty reservoir conditions. 
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Comparing the simulated results from model runs with and without an initially filled reservoir 

illuminates the dam’s ability to dampen the flooding effects in downstream floodplains when hit with 

a large amount of water from two extreme events in close temporal proximity. During an extreme 

event this extra water will likely find its way over the banks and into the downstream floodplain. 

These results can be seen in Figure 13. Much like the relationship between gate height and maximum 

water depth and inundation extent, increased effects are found during higher probability, more 

frequent flood events. When changing from an initially empty reservoir to an initially half-filled 

reservoir, the model predicted increases in maximum water depth at critical infrastructure “A” of 

10% and 63% for a 50-year flood and increases of 24% and 29% for a 100-year flood, in maximum 

water depth at critical infrastructure “A” with gates half and fully-open, respectively. The increases 

during lower probability extreme events are less severe, resulting in increases of only 6%, 5%, 5%, 

and 8% (200-year half and fully, 500-year half and fully) maximum water depth at the outside 

transformer. The initial reservoir stage affected not only water depth, but increased the inundation 

extent, which can be seen in all of the inundation maps.  

The results from our study indicated that the existence of the dam served as a major factor in 

controlling simulated inundation extent and water levels depths downstream. Similar to the trends 

with gate height and initial water levels in the dam’s reservoir, these effects are more significant in 

more frequent floods with higher probability (50- and 100-year), increasing maximum simulated 

water depths at critical infrastructure “A” by 10%, 63%, 24%, and 29% for the 50-year flood return 

period. 

5. Conclusions 

Accurate information regarding flood depth and inundation extent are invaluable to the 

assessment of potential flood risk. In this paper we presented a comprehensive framework for 

producing flood inundation maps of extreme event scenarios and demonstrated through a case study 

at the Naugatuck River in Connecticut. Our methodology links flood frequency analysis with a 

physically based, fully distributed hydrologic model, and a one-dimensional hydraulic model. To 

improve model performance, we utilized long-term atmospheric reanalysis (i.e. NLDAS) to drive 

ultra-high resolution hydrologic simulations, and a methodology using measured streamflow to 

create flood peak quantiles at long return periods and synthetic hydrographs, and fine resolution 

LIDAR terrain elevation data to construct accurate stream channel profiles.  

Ultimately, our framework was employed to investigate flood hazard by creating flood 

inundation maps for the Naugatuck River at the electric utility infrastructure under four separate 

extreme flood events (50-,100-,200-,500-year return periods), two separate dam operation procedures 

(gates half- and fully-open), two distinct dam protection setups (closed dam and no dam), and two 

separate initial dam reservoir conditions (empty reservoir and half-filled reservoir), resulting in a 

total of 24 flood cases. These inundation maps were combined with satellite imagery to better 

represent the extent of flooding and potential areas affected.  

Our results reveal how the dam assists in improving the resilience of the downstream floodplain. 

As seen by examining the no dam scenario, the existence of the dam naturally serves to delay flood 

waters from reaching vulnerable downstream floodplains. Furthermore, by evaluating differing dam 

gate height and reservoir water level scenarios, we illustrate the ability dam engineers have to further 

control and delay flood waters from reaching downstream translating directly to reduced maximum 

flood inundation at downstream critical infrastructure.  

Future development of this numerical framework will include, but not limited to: integrating 

novel regional flood frequency analysis (RFFA) approaches that provide more accurate flood 

frequency estimates by combining flow observation network, satellite derived flow observation, and 

high resolution hydrological simulation, calibrating the hydraulic component using remote sensing 

retrieved inundation maps, utilizing newly emerging detailed river bathymetric data obtained by 

penetrating LIDAR and survey, evaluating the reduction effectiveness of adding low-cost hydraulic 

infrastructure. 
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